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The Sortino Ratio and the more recently developed Omega statistic are conceptually related 
“downside” risk-adjusted return measures, but appear distinct mathematically. We show that 
each of these measures is a special case of Kappa, a generalized risk-adjusted performance 
measure. A single parameter of Kappa determines whether the Sortino Ratio, Omega, or another 
risk-adjusted return measure is generated.   
 
Using shape estimation functions for investment return distributions, we show that values for the 
first four moments of a return distribution are sufficient in many cases to enable a robust 
estimation of Kappa: it is not necessary to know the individual data points in the distribution. 
This further parameterization of the Kappa calculation enables efficient risk-adjusted return 
measurements and comparisons among a broad range of investment alternatives, even in the 
absence of detailed returns data. We examine return rankings of hedge fund indices under several 
variations of Kappa, and the extent to which these are affected by higher moments of the return 
distribution. 
 
The Sortino Ratio and Omega 
The Sortino Ratio and the more recently-specified Omega statistic, as defined by Shadwick and 
Keating [2002], can be used as alternatives to the Sharpe ratio in measuring risk-adjusted return. 
Unlike Sharpe, neither assumes a normal return distribution, and each focuses on the likelihood of 
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not meeting some target return. In contrast Sharpe measures only the sign and magnitude of the 
average risk premium relative to the risk incurred in achieving it.  
 
As specified, the Sortino Ratio and Omega appear distinct. Omega is defined as: 
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where  
 
F(.) = the cumulative density function (cdf) for total returns on an investment 
τ = threshold return 
 
 
The Sortino Ratio is defined as: 
 

 

( ) ( )
τ

2

µ τS

τ R F Rd
−∞

−
=

−∫
 (2) 

 
where 
 

µ = the expected periodic return = R F(R)d
∞

−∞
∫  

 
 
Despite their apparent distinctiveness, Omega and the Sortino Ratio each represent a single case 
of a more generalized risk-return measure, defined below, which we call Kappa (K). Kn generates 
Omega when n=1, the Sortino Ratio when n=2, or any of an infinite number of related risk-return 
measures when n takes on any positive value. Kappa is undefined where n<=0. 
 
 
Definition of Kappa 
 
Harlow [1991] defines the nth lower partial moment function as 
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Substituting equation (3) into equation (2) provides an alternative, fully equivalent definition of 
the Sortino ratio as 
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Kappa is a generalization of this quantity, thus: 
  

 ( )
( )n

n
n

µ τK τ
LPM τ

−
=  (5) 

 
by which definition, the Sortino Ratio is K2(τ), with τ being the investor’s minimum acceptable or 
“threshold” periodic return.  
 
Regarding Omega, in Appendix A, we show that 
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or, equivalently, 
 ( ) ( )1τ K τ 1Ω = +  (6b) 
 
Hence the Omega statistic and the Sortino ratio have identical structures, being equal to K1+1 and 
K2 respectively. Despite the addition of a constant to K1 in the Shadwick and Keating definition 
of Omega, Omega and K1 are for all practical purposes identical. We refer to them 
interchangeably below1.  
 
Kn is defined for any value of n exceeding zero. Thus, in addition to K1 and K2, any number of Kn 
statistics may be applied in evaluating competing investment alternatives or in portfolio 
construction. 
 
 
Discrete Calculation vs. Curve-Fitting 
The lower partial moment required to calculate Kappa can be estimated from a sample of actual 
returns by treating the sample observations as points in a discrete return distribution. Let 
 
T = sample size 
Rt = the tth return observation 
 
The estimated nth lower partial moment is 
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1  Kazemi, Schneeweis, and Gupta [2003] define a quantity that is similar to K1 that they 

call the “Sharpe-Omega ratio.” 
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This is a straightforward calculation but requires knowledge of the individual observations of the 
return sample. For obvious reasons relating to data availability, management and storage 
requirements, as well as for modeling and forecasting purposes, it would be useful to be able to 
calculate Kappa from a small number of return distribution characteristics rather than from raw 
data.  
 
An alternative approach to estimating LPMn(τ) is to assume that returns follow a particular 
continuous distribution and calculate the integral in equation (3) accordingly. For example, when 
estimating LPM2(τ), Sortino [2001] and Forsey [2001] assume that returns follow the three-
parameter lognormal distribution defined by Aitchinson and Brown [1957]. The three parameters 
of the distribution can be set so that the first three moments, mean (µ), standard deviation (σ), and 
coefficient of skewness (s) of the distribution match a given set of values. 
 
For the three-parameter lognormal distribution, the fourth moment, the coefficient of kurtosis (κ), 
is a function of s. We show this relationship in Figure 1. However, the value of κ required to 
accurately represent the return distribution could in reality be higher or lower than the value 
implied by the three-parameter lognormal distribution. Johnson [1949] describes a three-member 
“family” of four-parameter distribution functions, including bounded and unbounded curves in 
addition to the three-parameter lognormal. Hill, Hill and Holder [1976] (hereafter HHH) extend 
the Johnson family of functions by adding the normal distribution, and provide an algorithm for 
selecting the appropriate function and estimating its parameters based on given values of the first 
four moments. We describe the extended Johnson family of distribution functions in Appendix 
B2. 
 
Figure 1: Skewness vs. Kurtosis, 3-Parameter Lognormal Distribution 
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Using the HHH algorithm, we create a continuous return distribution from the values of µ, σ, κ 
and s. Using the resulting distribution function, we estimate LPMn(τ) by calculating the integral 
in equation (3) using the numerical techniques described by Press et al. [1992]. 
                                            
2  Kazemi, Schneeweis, and Gupta [2003] use an approximation of the Johnston 

distributions, but in a form that can result in the density function taking on negative 
values. 
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Johnson distribution functions have been used in other financial applications in a similar fashion. 
For example, Posner and Milevsky [1998] use Johnson functions to represent security price 
distributions and use them in integral formulas for pricing exotic options.  
 

Testing Kappa Calculations Based On Fitted Curves 
To evaluate how closely Kappa values derived from return distribution parameters match those 
derived from actual return data, K1 and K2 are calculated for 11 HFR monthly hedge fund 
indexes3 for the period January 1990 through February 2003  (“the sample period”), using both 
actual return data and curves fitted as described above. Hedge fund indexes are used because they 
represent a broad spectrum of distribution shapes.  
 
Distribution moments for the indexes are summarized in Table 1: 
 
Table 1: Kappa Input Parameters of HFR Hedge Fund Indexes 

 
Index 

Average Monthly 
Excess Return 

Standard 
Deviation 

Coeff. of 
Skewness 

Coeff. Of 
Kurtosis 

HFR Convertible Arbitrage 0.550 0.994 -1.341 6.064 
HFR Distressed Securities 0.756 1.835 -0.675 8.464 

HFR Emerging Markets 0.763 4.533 -0.747 6.448 
HFR Equity Hedge 1.026 2.678 0.132 4.172 

HFR Equity Market Neutral 0.426 0.914 0.036 3.388 
HFR Equity Non-hedge 0.861 4.276 -0.499 3.452 

HFR Event-Driven 0.737 1.977 -1.387 7.761 
HFR Fixed Income Arbitrage 0.310 1.335 -1.644 11.626 

HFR Fund of Funds 0.434 1.700 -0.305 6.966 
HFR Merger Arbitrage 0.491 1.284 -2.977 16.304 

HFR Short Selling 0.131 6.523 0.042 4.124 
 
K1 and K2 values for the indices, calculated using both discrete data and Johnson distribution 
functions estimated from the parameters above, appear in Tables 2a and 2b. Note that excess 
returns rather than raw returns are used; hence, a threshold value of τ = 0.0 implies a target return 
equal to the risk-free rate. 
 
Table 2a: Discrete & Parameter-Based Kappa Calculations, τ = 0.0% / month 

Index 
K1 

Discrete 

K1 
Parameter- 

Based 
K1    % 

Diff 
K2 

Discrete 

K2 
Parameter- 

Based 
K2     % 

Diff 
HFR Convertible Arbitrage 2.81 2.70 3.67 0.91 0.94 2.63 
HFR Distressed Securities 2.19 1.98 9.37 0.72 0.71 1.39 

HFR Emerging Markets 0.56 0.56 0.36 0.25 0.25 1.20 
HFR Equity Hedge 1.72 1.73 0.58 0.76 0.76 0.26 

HFR Equity Market Neutral 2.45 2.29 6.46 1.00 0.98 1.11 
HFR Equity Non-hedge 0.64 0.65 0.93 0.31 0.31 0.32 

HFR Event-Driven 1.70 1.55 8.61 0.58 0.57 0.52 
HFR Fixed Income Arbitrage 0.97 0.86 12.11 0.33 0.33 1.81 

HFR Fund of Funds 1.03 0.99 3.41 0.43 0.42 2.34 
HFR Merger Arbitrage 0.92 0.85 7.48 0.41 0.40 2.42 

                                            
3  Source: Hedge Fund Research, Inc. 
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HFR Short Selling 0.50 0.44 13.15 0.14 0.13 1.48 
 
Table 2b: Discrete & Parameter-Based Kappa Calculations, � = -1.0% / month 

Index 
K1 

Discrete 

K1 
Parameter- 

Based 
K1    % 

Diff 
K2 

Discrete 

K2 
Parameter- 

Based 
K2     % 

Diff 
HFR Convertible Arbitrage 21.255 24.824 16.79 4.632 4.811 3.86 
HFR Distressed Securities 11.049 9.553 13.54 2.222 2.290 3.06 

HFR Emerging Markets 1.733 1.728 0.29 0.667 0.657 1.50 
HFR Equity Hedge 6.239 6.264 0.40 2.109 2.087 1.04 

HFR Equity Market Neutral 48.036 58.155 21.07 9.183 10.146 10.49 
HFR Equity Non-hedge 1.907 1.904 0.16 0.800 0.796 0.50 

HFR Event-Driven 7.337 6.613 9.87 1.745 1.789 2.52 
HFR Fixed Income Arbitrage 10.000 8.570 14.30 1.919 2.007 4.59 

HFR Fund of Funds 8.505 7.645 10.11 2.091 2.064 1.29 
HFR Merger Arbitrage 5.781 5.170 10.57 1.836 1.858 1.20 

HFR Short Selling 8.419 7.257 13.80 1.509 1.552 2.85 
 
For the hedge fund indices considered here, the percent differences between Kappa estimates 
based on discrete data and parameter-based Kappa estimates increase as τ decreases. These 
differences might be material if Kappa were used as an optimization metric, or for stress testing 
in a quantitative portfolio construction or asset allocation process. We conclude that parameter-
based Kappa estimates should be interpreted with caution when used for these purposes. 
 
However, possibly the commonest use of risk-adjusted performance measures is a simple 
comparison of competing investment alternatives. In this context, ranking differences that result 
from Kappa estimates based on the two calculation methods are a key consideration. Tables 3a 
through 3c show the rankings of the 11 hedge fund indices, for τ values of -1.0% per month, -
0.5% per month and 0.0% per month respectively, for K1, K2 and K3 over the sample period: 
 
Table 3a: Index Rankings, Alternative Kappa Calculations, τ = -1.0% / month 

  K1 K2 K3 
Discrete 

Data 
Rank 

Parameter-
Based Rank

Discrete 
Data 
Rank 

Parameter-
Based Rank

Discrete 
Data 
Rank 

Parameter-
Based Rank

HFR Convertible Arbitrage 10 10 10 10 10 10 
HFR Distressed Securities 9 9 9 9 8 7 

HFR Emerging Markets 1 1 1 1 1 1 
HFR Equity Hedge 4 4 8 8 9 9 

HFR Equity Market Neutral 11 11 11 11 11 11 
HFR Equity Non-hedge 2 2 2 2 2 2 

HFR Event-Driven 5 5 4 4 4 4 
HFR Fixed Income Arbitrage 8 8 6 6 5 5 

HFR Fund of Funds 7 7 7 7 6 6 
HFR Merger Arbitrage 3 3 5 5 7 8 

HFR Short Selling 6 6 3 3 3 3 
Ranking Correlation 1.000 1.000 0.991 
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Table 3b: Index Rankings, Alternative Kappa Calculations, τ= -0.5% / month 

  K1 K2 K3 

 

Discrete 
Data 
Rank 

Parameter-
Based Rank

Discrete 
Data 
Rank 

Parameter-
Based Rank

Discrete 
Data 
Rank 

Parameter-
Based Rank

HFR Convertible Arbitrage 10 10 10 10 10 10 
HFR Distressed Securities 9 9 9 9 8 8 

HFR Emerging Markets 1 1 1 1 1 1 
HFR Equity Hedge 4 6 8 8 9 9 

HFR Equity Market Neutral 11 11 11 11 11 11 
HFR Equity Non-hedge 2 2 2 2 2 2 

HFR Event-Driven 7 8 6 7 6 5 
HFR Fixed Income Arbitrage 8 7 5 5 4 4 

HFR Fund of Funds 5 5 7 6 5 6 
HFR Merger Arbitrage 3 3 4 4 7 7 

HFR Short Selling 6 4 3 3 3 3 
Ranking Correlation 0.955 0.991 0.991 

 
Table 3b: Index Rankings, Alternative Kappa Calculations, τ= 0.0% / month 

  K1 K2 K3 

 

Discrete 
Data 
Rank 

Parameter-
Based Rank

Discrete 
Data 
Rank 

Parameter-
Based Rank

Discrete 
Data 
Rank 

Parameter-
Based Rank

HFR Convertible Arbitrage 11 11 10 10 10 10 
HFR Distressed Securities 9 9 8 8 8 8 

HFR Emerging Markets 2 2 2 2 2 2 
HFR Equity Hedge 8 8 9 9 9 9 

HFR Equity Market Neutral 10 10 11 11 11 11 
HFR Equity Non-hedge 3 3 3 3 4 4 

HFR Event-Driven 7 7 7 7 7 7 
HFR Fixed Income Arbitrage 5 5 4 4 3 3 

HFR Fund of Funds 6 6 6 6 5 5 
HFR Merger Arbitrage 4 4 5 5 6 6 

HFR Short Selling 1 1 1 1 1 1 
Ranking Correlation 1.000 1.000 1.000 

 
Return rankings for the hedge fund indexes are, in general, little affected by the choice of Kappa 
estimation methodology. We conclude tentatively that, for the purpose of evaluating competing 
investment alternatives, the parameter-based method of estimating Kappa is robust and, where 
efficiency and simplicity are important, preferable to the more complex calculation based on 
discrete return data. However, more comprehensive tests of this conclusion are needed.   
 
Return rankings are, however, affected materially by the choice of Kappa’s n parameter. Note for 
instance that in Table 3b, the ranking of the Equity Hedge index ranges from 4 (K1) to 9 (K3). The 
rank of the Short Selling index is 6 under K1 and 3 under K3. These are the only two indices which 
combine positive skewness with a kurtosis coefficient of more than 4. In the next section we 
examine the relationship between Kappa values, skewness and kurtosis in more detail. 
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Table 4 summarizes the index rankings for K1, K2 and K3 at a common return threshold. Note 
that, of the eleven indices examined, only two (Emerging Markets and Event-Driven) have 
constant ranks across all three Kappa variants. Consider also that these indices, too, might show 
ranking changes if other Kappa variants were used. 
 
Table 4: Kappa Rankings of HFR Indices at τ = 0 

 K1 K2 K3 Rank K1 Rank K2 Rank K3 
HFR Convertible Arbitrage 2.7026 0.9383 0.5781 1 2 2 
HFR Distressed Securities 1.9829 0.7117 0.4204 3 4 4 

HFR Emerging Markets 0.5610 0.2466 0.1606 10 10 10 
HFR Equity Hedge 1.7250 0.7566 0.5118 4 3 3 

HFR Equity Market Neutral 2.2889 0.9838 0.6714 2 1 1 
HFR Equity Non-hedge 0.6497 0.3092 0.2181 9 9 8 

HFR Event-Driven 1.5489 0.5721 0.3504 5 5 5 
HFR Fixed Income Arbitrage 0.8562 0.3253 0.1951 7 8 9 

HFR Fund of Funds 0.9906 0.4184 0.2660 6 6 7 
HFR Merger Arbitrage 0.8542 0.4033 0.2881 8 7 6 

HFR Short Selling 0.4358 0.1328 0.0769 11 12 12 
 
The existence of substantive ranking differences implies that some Kappa variants may be 
superior to others in some circumstances. This has important implications regarding the choice of 
Kappa variant when evaluating investment alternatives or constructing a diversified portfolio. 
How the most appropriate Kappa variant should be chosen is, unfortunately, less obvious. 
 
Empirical Behavior of Kappa 
The Shape of Kappa Curves: All Kappa curves represent an inverse relationship between the 
threshold return chosen and the value of Kappa. The steepness of the Kn curve at any given 
threshold return is inversely related to the chosen value of the n parameter. Figure 2 shows K1, K2 
and K3 curves, relative to threshold return (expressed as a risk premium), for the S&P 500 Index, 
for the period January 1990 through February 2003. 
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Figure 2: Kappa Value vs. Threshold Risk Premium ($US) 

 
By construction, every Kappa variant has a value of zero when the threshold return equals the 
average figure.  
 
Note that although K2 – the Sortino ratio - is usually expressed as a single-point statistic relative 
to a single threshold return, it is more informative to plot this Kappa variant, as well as others, 
against a range of threshold values.  
 
All Kappa curves are monotonic. Interpretation of differences in Kn values at different return 
thresholds is complex: although the value of K1 at a threshold return of -0.4% is double that of K1 
at 0.0%, this does not make K1 (-0.4) twice as “good” as K1 (0.0). Differences between or ratios 
of Kappa values at different threshold returns are also dependent on the value of n chosen: the 
ratio of Kn (τ) to Kn (τ + 0.75), for the S&P 500 at different values of n, over the S&P sample 
period, is shown in the Figure 3. It can be seen that the rate of change in Kappa as a function of τ 
is inversely proportional to n. 
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Figure 3 

 
 
We conclude tentatively that Kappa values should be treated as simple ordinals: for a given value 
of the n parameter, a higher Kappa is always better than a lower, but the size of the difference 
between two Kappa values is not subject to simple interpretation. 
 
Kappa Sensitivity to Skewness: Kappa is insensitive to skewness for values of τ which lie close 
to or above the mean return; but sensitive to skewness when τ is substantially below the mean 
return. The charts below show the relationship between Kappa and skewness for a return 
distribution with a µ = 0.0, σ = 1.0 and κ = 3.0. When τ = -2.0, the ratio of K1 at s = 0.5 to K1 at s 
= -0.5 is about 46; the corresponding figures for K2 and K3 are 14 and 10 respectively. Thus, 
Kappa sensitivity to skewness, at low values of τ, is a negative function of n, and the n parameter 
can be interpreted as a measure of skewness risk “appetite” for threshold returns below the mean. 
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Figure 4a: Kappa Sensitivity to Skewness For n = 1, 2 and 3 

 
 
Figure 4b: K1 Sensitivity to Skewness at Different Return Thresholds 
 

 
Kappa Sensitivity to Kurtosis: As is the case with skewness, Kappa is insensitive to kurtosis for 
values of τ that lie close to or above the mean return; but sensitive to kurtosis when τ is 
substantially below the mean return. The charts below show the relationship between Kappa and 
kurtosis for a return distribution with µ = 0.0, σ = 1.0 and s = 0.0. When τ = -2.0, the ratio of K1 
at κ = 5.0 to K1 at κ = 3.0 is about 0.53. The value of this ratio decreases slightly as n increases. 
 
In this respect, it appears that the n parameter of Kappa can be interpreted as a measure of 
kurtosis risk aversion for return thresholds below the mean. This is in contrast to skewness, for 
which the n parameter appears to represent a measure of risk appetite. 

 

 

Kappa vs. Skewness: µ =0, SD=1, K=3, τ = -2.0 

1

10

100

1000

10000

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Skewness

K
ap

pa

 Kappa1 
 Kappa2 
 Kappa3 

Kappa1 vs. Skewness: µ =0, SD=1, K=3 

1

10

100

1000

10000

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Skewness

K
ap

pa

 tau = -2.0
 tau = -1.0



October 2003  12 

 
Figure 5a: Kappa Sensitivity to Kurtosis For n = 1, 2 and 3 

 
 
Figure 5b: K1 Sensitivity to Kurtosis at Different Return Thresholds 
 

 
 
Interpreting Kappa 
Detailed derivations, descriptions and suggested applications of K1 (Omega) and K2 (Sortino 
ratio) already exist. There remains the question of what Kappa “means” in these cases or, as well, 
when n is set to some other value such as 0.5 or 3.  
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While interesting, the seeming relationship between Kappa variants and particular moments of a 
return distribution is not meaningful. For instance, while K2 depends in part on semi-variance, 
and K1 depends in part on a semi-mean, there is no corresponding distribution moment for Kappa 
variants with non-integer parameter values, nor is the relationship between K3 and a notional 
“semi-skewness” statistic, or K4 and a “semi-kurtosis” statistic, easily interpreted. Moreover, all 
Kappa variants are sensitive, to some degree, to the first four as well as other moments of the 
return distribution. 
 
Conclusions 
Omega and the Sortino ratio are two among many potential variants of Kappa. In certain 
circumstances, other Kappa variants may be more appropriate or provide more powerful insights. 
 
The ranking of a given investment alternative can change according to the Kappa variant chosen, 
due in part to differences among the variants in their sensitivity to skewness and kurtosis. The 
choice of one Kappa variant over another will therefore materially affect the user’s evaluation of 
competing investment alternatives, as well as the composition of any portfolio optimized to 
maximize the value of Kappa at some return threshold. We are not aware of any generally 
applicable rule for choosing the “correct” Kappa variant for a given purpose. 
 
For the purposes of simple comparisons among competing investment alternatives at “ordinary” 
minimum return thresholds, Kappa may be estimated efficiently using a parameter-based 
calculation that eliminates the need to gather and manage discrete return data. However, this 
estimation method may lead to material discrepancies in Kappa estimates at low return 
thresholds, and so should be used with caution for the purposes of stress testing or portfolio 
construction. Other curve-fitting algorithms exist in addition to that described here, and some of 
these may potentially provide more robust parameter-driven Kappa estimates. 
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Appendix A: Equivalence of Omega and Kappa1 
 
The Omega function is defined as 
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Applying integration by parts to the denominator of Ω(τ) yields: 
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Applying integration by parts to the numerator of Ω(τ) yields: 
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From the definition of µ, it follows that 
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Equation (A.3) shows that the second integral in equation (A.4) is the numerator of Ω(τ). 
Equation (A.2) shows that the last integral in equation (A.4) is LPM1(τ). Making these 
substitutions into equation (A.4) and rearranging terms yields: 
 

 ( ) ( )11 F R R µ τ LPM τd
τ

∞

− = − +  ∫  (A.5) 

 
Substituting the right-hand side of equation (A.5) for the numerator of Ω(τ) and LPM1(τ) for the 
denominator of LPM1(τ) yields: 
 

 ( ) ( )
( ) ( )

1

1 1

µ τ LPM τ µ ττ 1
LPM τ LPM τ

− + −
Ω = = +  (A.6) 

 
Hence, 
 
 ( ) ( )1τ K τ 1Ω = +  (A.7) 
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Appendix B: The Extended Johnson Family of Distribution Functions 
 
A random variable X has a distribution function belonging to the Johnson family as defined by 
HHH if X can be transformed into a standard normal random variable Z as follows: 
 
 
 ( )Z g X;γ,δ,ξ,λ=  (B.1) 
 
where g is one of the following four functions: 
 

 ( )

( )( ) ( ) ( )

( )

( )

( )

1

λx>λξ
λ γ δ ln λ x ξ , 3-param. lognormal

λ= 1

x ξγ δsinh unbounded
λg x;γ,δ,ξ,λ

x ξγ δ ln , ξ<x<ξ+λ bounded
ξ λ x

γ δx normal

−


 + −   ±

 − +  =  
  − +  + −  
 +

 (B.2) 

 
 
The choice of g depends on the values of κ and s.4 If s ≈ 0 and κ ≈ 3, we use the normal 
distribution and set 
 

 1δ
σ

=  (B.3) 

 µγ
σ

=  (B.4) 

 
Otherwise we use the procedure described below. 
 
Let w be the solution to the equation 
 
 ( )( )2 2w 1 w 2 s− + =  (B.5) 
 
Let 
 
 * 4 3 2κ w 2w 3w 3= + + −  (B.6) 
 
If X follows the three-parameter lognormal distribution, κ = κ*.  So if, κ ≈ κ*, we use the three-
parameter lognormal distribution. The parameters are set as follows: 
 

                                            
4  Note that for κ and s to be a valid combination of coefficients of skewness and kurtosis, 

we must have κ > s2+1. 
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( )
1δ

ln w
=  (B.7) 

 ( )
2

w w 1δγ ln
2 σ

− 
=  

 
 (B.8) 

 ( )λ sign s=  (B.9) 

 

1 γ
2δξ µ λ exp
δ

 − 
= −  

  
 

 (B.10) 

 
If κ is significantly less than κ*, the bounded distribution is used. If κ is significantly greater than 
κ*, the unbounded distribution is used. In these cases, the parameters are found using the iterative 
algorithms in HHH. 
 


