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Abstract 
 
We present a new approach to analysing returns distributions, the Omega function, which may be used 

as a natural performance measure. Analysis based on Omega is in the spirit of the downside, lower 

partial moment and gain-loss literatures. The Omega function captures all of the higher moment 

information in the returns distribution and also incorporates sensitivity to return levels. We indicate 

how this may be applied across a broad range of problems in financial analysis and apply it to a range 

of hedge fund style or strategy indices. 
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A Universal Performance Measure 
 

1. Introduction 

 

Many of the difficulties we encounter in performance measurement and attribution are 

rooted in two over-simplifications. The first is that mean and variance fully describe 

the distribution of returns. The second is that the risk-reward characteristics of a 

portfolio may be described without reference to any return level aside from the mean 

return. It is a generally accepted fact of empirical finance that returns from 

investments are not distributed normally. Thus in addition to mean and variance, 

higher moments are required for a complete description.  It is likewise clear that a 

return at the level of the mean may be regarded as a gain by one investor and as a loss 

by another and that the “risk” of a return far above the mean has a different impact 

than that of one far below the mean. 

 

In this paper we introduce a performance evaluation measure, Ω, which accomplishes 

the task of incorporating all of the higher moments of a returns distribution. It 

provides a full characterisation of the risk reward characteristics of the distribution in 

a way which is intuitively appealing and easily calculated. Instead of estimating any 

individual moments it measures their total impact, which is of course precisely what is 

of interest to practitioners.  It also provides a risk-reward evaluation of a returns 

distribution which incorporates the beneficial impact of gains as well as the 

detrimental effect of losses, relative to any individual’s loss threshold. 

 

Omega is a natural feature of the returns distribution. In fact it is, in a mathematically 

precise sense, equivalent to the returns distribution. Thus its construction from a 

returns distribution is entirely canonical, requiring no choices and introducing no 

ambiguity not already present in the returns data. Omega is a function that may be 

evaluated at any value in the range of possible returns, so that it allows performance 

comparisons with respect to any ‘risk’ threshold in this range.  

 

Omega may be used to rank manager performance, without the need to introduce 

utility functions1. In order to rank a collection of portfolios our performance function, 
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Ω, will need just the simple decision rule that we prefer more to less, that we are not 

satiated.  

 

 In addition to providing corrections to mean-variance measures by taking higher 

moment information into account, Omega also takes into account the level of return 

against which a given outcome will be viewed as a gain or loss. Even in the case 

where returns are normally distributed, this provides additional information which 

mean and variance alone do not encode. This can lead to significantly different 

portfolio optimisations than are produced by traditional mean-variance analysis. 

 

Before defining Omega, we provide some model returns distributions which illustrate 

the limitations of analysis which uses only the mean and variance. We show that the 

question of preference for one portfolio over another must vary with the level of 

return which is considered. We also show that the information included in a mean-

variance approximation can be far less significant than the information which is 

neglected. 

 

First we consider two assets with normally distributed returns.  

 

 
Diagram 1.1 Asset A (dashed) with mean 7 and variance 1.44, asset B (solid) with mean 7 and 
variance 2.25 and a loss threshold at r= 8. 
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Asset A has a mean of 7 and variance of 1.44, asset B has the same mean and a 

variance of 2.25. The Sharpe ratio says that we should prefer asset A to asset B. This 

ranking minimises the potential for loss, but of course it also minimises the potential 

for gain. If we use only mean and variance our rankings are biased in that they 

implicitly regard the potential for large gain and large loss as equally undesirable. We 

consider the position of an investor who regards a return below 8 as a loss and one 

above 8 as a gain. To assess the relative attractiveness of assets A and B, such an 

investor must be concerned with the relative likelihood of gain or loss not merely the 

mean return and the variance of returns. It is apparent from Diagram 1.1 that from this 

point of view, asset B is more attractive than asset A. For asset B about 25% of 

returns are above this investor’s loss threshold, as compared with only 20% for asset  

A. The ratios of likelihood of gain to loss are 0.338  for asset B and 0.254 for asset A. 

This approach is not merely reversing the usual ranking in terms of variance however. 

For an investor whose loss threshold is at 6 rather than 8, the same analysis shows that 

asset A would be preferable to asset B. The ratios of likelihood of gain to loss relative 

to a threshold of 6 are 3.94 for asset A and 2.96 for asset B. As we will show in what 

follows, the Omegas for these two assets will show a change of preference at the 

mean, with asset A preferable to asset B for all return levels below the mean and asset 

B preferable to asset A for all return levels above the mean. 

 
Diagram 1.2 Returns distributions for assets C (dashed) and D (solid) with mean of 2 and 
standard deviation of 1.6 . 
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Next, we consider two model returns distributions which have both have mean 2 and 

standard deviation of 1.6. These are illustrated in Diagram 1.2. All of their even 

moments are the same and all of their odd moments are equal in magnitude but 

opposite in sign. For example, asset C has skew of –0.398 while asset D has skew of     

0.398 and both have kurtosis of 3.84.  

From the point of view of mean variance analysis however, these two assets are 

indistinguishable. 2 The likelihood of a return at any level below the mean is greater 

for asset C than for asset D while any return above the mean is more likely with asset 

D. In particular, catastrophic loss is much more likely with asset C than asset D. The 

probability of a return 4 standard deviations below the mean is 5 times as high for 

asset C as it is for asset D. We will see later that the omegas for these two assets agree 

at the mean but that for any other return level asset D is preferable to asset C. As all of 

the even moments are equal, this preference is a feature of the difference in the odd 

moments. 

 
Diagram 1.3 Returns distributions for assets E(dashed) and F (solid). 
 

Finally we consider two model returns distributions which again have the same mean 

and variance but which have dramatically different capacities for large losses and 

large gains.  Asset E has normally distributed returns with a mean return of 3 and a 
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variance of 2.76.  The returns for asset F are symmetrically distributed and it has the 

same mean and standard deviation as asset E. Asset F exhibits a vastly different 

propensity both for catastrophic loss and for large gain than does asset E. For example 

the likelihood of a return more than 4 standard deviations below the mean is 137 times 

as likely for asset F than for asset E. Because the returns are symmetrically 

distributed, a return more than 4 standard deviations above the mean is also 137 times 

as likely with asset F than with asset E. On the other hand, in the range of returns 

closer to the mean it is less obvious how to rank the two. The expected return 

conditional on a return less than the mean is 1.88 for asset F and only 1.66 for asset E. 

The expected return conditional on a return greater than the mean however, is 4.12 for 

asset F and 4.34 for asset E so that preferences for asset E and F clearly depend on the 

range of returns under consideration. Because the two assets have the same mean and 

variance, it must be the case that these effects are due to higher (even order) moments. 

The kurtosis of asset F is 9.6 (i.e. excess kurtosis is 6.6) and, in fact, all of the even 

moments are higher than those of the normal distribution.  

 

Practitioners are well aware that the impact of higher moments can be significant. 

Over the last decade, we have seen many attempts to analyse and attribute returns 

from portfolios and securities which by design seek to capture asymmetries in 

investment returns. This has resulted in the current fashion for style analysis. Much of 

this work has focussed upon “hedge” funds. Some traditional asset “classes”, such as 

corporate bonds, also require the consideration of higher moments in order to fully 

understand their performance characteristics. The central problem is that, as in our 

examples above, the mean and variance toolkit is simply inadequate for such analysis.  

 

We note that there is a very substantial body of work that seeks to extend the mean-

variance framework of modern finance to encompass higher moments. The theoretical 

difficulties within that literature arise from the need to specify the form of a utility 

function and the substitution across moments. In addition, there is a serious obstacle 

to incorporating the effects of higher moments in performance measurement, as data 

are often both sparse and noisy. This means that estimation of the moments is error 

prone and any attempt to attribute performance characteristics to them individually is 

therefore difficult if not impossible to do reliably.  
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What is more, it is extremely difficult to establish that an effect is caused by, say the 

third moment as opposed to all moments of order three or higher. While the model 

portfolios in our examples appear to conform to the notion that positive skew is 

desirable and negative skew undesirable, this is not by itself true in general. In fact, 

asset C and D have the same even moments of all orders and opposite odd moments 

of all orders, they do not simply differ in skewness. Assets E and F have all odd 

moments equal to zero but differ substantially not only in their kurtosis but in all of 

their even moments. In these cases, moments of high order have a substantial impact 

on the risk-reward characteristics of the distributions. 

 

This suggests very strongly that any approach which depends on systematically 

extending econometric analysis based on individual moments is doomed to fail.  
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 2. The Omega Function 

 

We begin with an analogy with a simple bet. The first consideration is how much we 

stand to win if we win and how much we stand to lose if we lose. By itself however, 

this information is not enough to judge the quality of our bet. To make a meaningful 

comparison of the potential gains and losses, we need to weight them appropriately by 

their probabilities of occurrence.  

 

The investment situation differs from this only in that the ‘stake’ is unknown at the 

outset and the loss threshold L must be specified exogenously. That the level which 

constitutes ‘loss’ varies by individual and application of the investment is clear. The 

loss threshold might be the rate of inflation for an investment providing a pensioner’s 

income or the return on a benchmark index for a ‘growth’ fund. We illustrate this in 

Diagram 2.1 with a model returns distribution relative to a benchmark index and a 

return threshold set at 70 basis points above the benchmark return. 

 

 

 

 

 

 

 

 

 

 

 

 
Diagram 2.1 The returns distribution with the threshold set at 70 basis points. 

 

Once we have specified the return level L however, we may make a probability 

weighted comparison of gains and losses relative to it, in the same way we did with 

the simple bet.  The expected gain, given a return greater than L, is just the amount by 

which the conditional expectation E(r r ≥ L) exceeds the threshold. The expected 

loss, given a return less than L, is the amount by which the conditional expectation 
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E(r r ≤ L) falls below the threshold. Thus the expected gain and loss relative to the 

threshold r = L, are g = E(r r ≥ L) − L  and l = L − E(r r ≤ L)  respectively. We 

illustrate this in Diagram 2.2 with the cumulative distribution for the returns of 

Diagram 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Diagram 2.2 The cumulative distribution with the expected returns given a return above and 
below 70 basis points. 
 

As before, these levels by themselves are not informative. In order to compare 

potential gains and losses meaningfully, we need to weight them by the appropriate 

probabilities.  If F(r)  is the cumulative distribution function for the returns, then the 

probability of a return less than our threshold is F(L) . The probability of a return 

above the threshold is 1− F(L). Thus the ratio g × (1− F(L))
l × F(L)

 is a measure of the 

quality of our investment ‘bet’. As is illustrated in Diagram 2.3, this is the ratio of the 

area of the upper rectangle to the area of the lower. 
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Diagram 2.3 Probability weighted gains and losses relative to the threshold of 70 basis points. 

The ratio of the area of the upper box to the area of the lower box is an estimate of the quality of 

a bet on a return greater than 70 basis points. 

 

This ratio considers only one particular gain and loss possibility. However, if (a,b) is 

the possible range of returns then gains and losses of any amount in this interval can 

occur with some probability. To take this into account, we may generalise our initial 

comparison of gains and losses by considering a sequence of gains and losses and 

summing these with their appropriate probability weights. This approach leads to a 

unique limiting case as we allow the unit of gain or loss to become progressively 

smaller. We illustrate this idea in Diagrams 2.4 and 2.5 below.  

 

As we allow our unit of gain or loss to shrink to zero and sum the probability 

weighted gains, we obtain I2(70) = 1− F(x)[ ]dx
70

b

∫  in the limit. Similarly, the sum of 

the probability weighted losses leads to I1(70) = F(x)dx
a

70

∫ .  
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Diagram 2.4. Reducing the unit of gain and loss refines the estimate of the quality of a bet on a 
return above the level of 70 basis points. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Diagram 2.5  The limit as the unit of gain and loss shrinks to zero. The ratio of the upper area to 
the lower is Ω(70). 
 

The ratio of these two is a measure of the quality of our investment ‘bet’ relative to 

the return threshold r = 70.  
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The construction which led us to this ratio can be repeated for any return threshold r 

and we call the resulting  function Omega: 

 

Ω(r) :=
1− F(x)[ ]dx

r

b

∫

F(x)dx
a

r

∫
 . 

 

Thus, in our example, the probability weighted ratio of gains to losses relative to a 

return of 70 basis points above the benchmark mean return is Ω(70).  

 

Like the cumulative distribution for the returns, Ω is a function of return level. In fact, 

in a mathematically precise sense, Ω is equivalent to the returns distribution. As a 

result, available information from the returns distribution, including higher moments, 

is encoded in Ω. We shall illustrate this point later with a range of examples. 

 

No parametric assumptions are needed and no constraints are placed upon the form of 

the distribution aside from the requirement that the integrals I1(r) = F(x)dx
a

r∫  and 

I2(r) = 1− F(x)dx
r

b

∫  exist. For analytic distributions defined over infinite intervals 

this is easy to deal with. In practice, existence presents no problems since we work 

with discrete return observations. 

 

Assuming the convergence of the integrals, Ω is a natural feature of the underlying 

probability distribution. As we indicate below, Ω is a smooth monotone decreasing 

function from (a,b) to (0,∞). We will also show that, independent of the returns 

distribution, Ω takes the value 1 at the distribution’s mean µ .  

 

The function Ω(r) allows us to compare returns for different assets and to rank them 

on the basis of the magnitude of their Omegas. The rankings will depend on the 

interval of returns under consideration and will incorporate all higher moment effects.  

 

We conclude this section with the Omega functions for the model asset distributions 

introduced in section1. (Because of the large variation in the values of Omega over 
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the range of possible returns, we have presented the natural logarithm of Omega 

rather than Omega.) 

 

 
Diagram 2.6 log(Ω (r)) for assets A(dashed) and B (solid). Asset  A is preferable at any return 
level below the mean and asset B is preferable above the mean. 
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Diagram 2.7 log(Ω(r)) for assets C(dashed) and D (solid).  Asset D is preferable to asset C 
everywhere except at the mean. 
 
 

 
 
Diagram 2.8 logΩ(r) for assets E (dashed) and F (solid). Asset E is preferable for all returns 
below 1.4 while asset F is preferable for all returns above 4.6.  Between 1.4 and the mean return, 
asset F is preferable to asset E. This preference is reversed between the mean and 4.6. 
 
 

3. Some elementary properties of the Omega measure 

We indicate some of the properties of the Omega function here. A more detailed 

exposition is left to another paper3. We begin by examining the sensitivity of Ω to 

changes in the return level. We have Ω(r) =
I2(r)
I1(r)

where I1(r) = F(x)dx
a

r

∫  and 

I2(r) = [1− F(x)]dx
r

b

∫ . We may differentiate this expression with respect to r to obtain 

dΩ
dr

=

dI2

dr
I1 −

dI1

dr
I2

I1
2 , or more explicitly, dΩ

dr
=

[F(r) −1]I1 − F(r)I2

I1
2 . In particular we 

see that dΩ
dr

is as smooth as F(r) and that dΩ
dr

< 0 everywhere.   

 



 15

Thus Ω is a smooth monotone decreasing function from (a,b) onto (0,∞) from which 

it follows that it takes the value 1 precisely once. It is a consequence of the definitions 

of I1 and I2  that the mean satisfies )0()0( 12 II −=µ and one may deduce from this, and 

the definition of  Ω,  that Ω(µ) =1. 

 

Unless the cumulative distribution fails to be differentiable, the Omega measure has 

derivatives of at least second order and these may also be used to distinguish between 

distributions which differ in their higher moments, as we illustrate in appendix B. 

 

We may also consider the variation of the Omega measure as the underlying 

cumulative distribution varies according to various scenarios. This is also 

straightforward but we leave it to another paper4. 

 

The Omega measure is an affine invariant of the returns distribution. That is, for any 

affine change of variable, BArrr +=→ )(ϕ , with A>0, there is an induced cumulative 

distribution and the Omega measure for the induced distribution, ˆ Ω  satisfies 
ˆ Ω (ϕ(r)) = Ω(r) . Conversely, if this relationship is satisfied by any change of variable 

ϕ   then  BArr +=)(ϕ . For affine changes of variable with A<0, the relation is 

ˆ Ω (ϕ(r)) =
1

Ω(r)
. 

 

The variation of Omega with time is also meaningful as dΩ
dt

contains the full 

information set of the series, such as auto-correlations of all orders, and when used to 

compare with another security or portfolio of similar periodicity, must also contain the 

cross-relations. The time evolution of Ω for two index returns series evaluated at a 

risk threshold of zero and the equivalent Sharpe ratio are shown in the section 

Applications.  

 

Omega may also be directly related to other techniques in common use such as 

tracking error5. In the applications which follow, we also report the hedge fund 

indices relative to the return on the MSCI index for the purpose of illustration. 
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As we have pointed out, in order simply to rank the performance of two or more 

assets, no utility function is required, however we may apply any. For example: Any 

utility function which is monotone may be used as a transformation of the returns (or 

equivalently to induce a transformation of the cumulative distribution). The resulting 

Omegas will produce changes of preference at different points except in the case 

where the change of variable is affine.  

 

4 Applications 

 

Both initial applications are to a set of portfolio returns for a range of hedge fund style 

indices from two vendors and two traditional comparisons, MSCI and SWGBI. The 

data is monthly for the period beginning January 1993 and ending April 2001, 100 

data points for each series. The data was presented blind and nothing is known of the 

portfolios beyond their name descriptions. The descriptive statistics are presented as 

Table 01. It is evident that these distributions are far from normally distributed but the 

Jarque Bera statistics are not reported for brevity. A pseudo-Sharpe ratio, where the 

risk-free rate is zero, is presented. These values range from 1.70 to 0.23. It is 

interesting to note that by the Sharpe measure, and also by Omega, which includes 

higher moment effects, the bond and equity indices are the worst performing 

portfolios. Auto-correlation values for the series and the squared series were also 

computed. Positive (0.20 – 0.55) first order auto-correlation was evident but perhaps 

more interestingly similar pairs such as ACSA – HCSA return differing values - 0.40 

and 0.55 respectively in this case6. The squared series showed no evidence of 

statistically significant auto-correlation. 

 

The overwhelming impression is that, though these are competing suppliers of index 

data series, there is a considerable disparity between them. There is an important 

caution for anyone comparing a portfolio with its style index here. The style index 

chosen is critical. If we compare the obvious pairings and consider the hypothesis that 

each of the two sequences is a sampling from some common distribution, the 

hypothesis is rejected (at 5%) for all pairs except AMA-HMA, where the difference 

appears to be a simple bias7. It is interesting to note that the government bond index 

exhibits small positive skewness as might be expected from the effect of convexity. 
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Somewhat more surprisingly the world equity index exhibits negative skewness and 

proved difficult for the traditional fund manager8 to outperform over this period. 

 

The (product moment) correlations of the data sets were calculated and are presented 

as table 02. The point to note here is that the equity and world government bond 

indices were in line with historic relations at 0.24. The hedge fund strategies showed 

negative correlation with the world government bond index. Perhaps the most 

alarming feature of this matrix is that the correlations with other strategies from the 

same data supplier were typically higher than correlations across pairs.  

 

A principal components analysis was also conducted. Table B, below, lists the first six 

values and their cumulative explanatory power. The surprise here, particularly so as 

there are pairs within the data, is that the explanatory power of the eigenvalues 

diminishes very slowly. 

 

Eigenvalues 1 2 3 4 5 6 

Value 9.3869 1.6709 1.3582 1.0966 0.7814 0.7344 

% of variability 52.15 9.28 7.55 6.09 4.34 4.08 

Cumulative % 52.15 61.43 68.98 75.07 79.41 83.49 

Table B 

The correlation to factors matrix is given as table 03. The points to note in this are that 

the world government bond index is essentially uncorrelated to the first factor, while 

with the exception of index HMN, all others are strongly positively so. The second 

factor has equity, global bonds and HMN responding positively strongly while ACSA 

responds strongly negatively. In the table some of the more intriguing relations have 

been printed in bold type. For example, indices AM and HM share a response to 

factor 4 in the 10% - 25% explanatory range. The overwhelming impression from this 

factor matrix is that noise is dominant.  

 

For the purposes of comparison, the only further proviso which we need is that 

comparison is valid across any range of returns. 

 

Return Threshold – Zero 
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The Omega and Sharpe ratios with a risk free of zero with the return threshold set at 

zero are tabulated below, where the left hand sequence lists the indices ranked by their 

Sharpe ratio and the right hand lists the indices ranked by their Omega values, Ω(0). 

 
 Sharpe Indicator  Ω(0) 

ARV 1.699 1 ARV 43.98 

ACSA 1.338 0 AELS 20.33 

AMA 1.245 0 ACSA 19.19 

AELS 1.214 0 AMA 18.04 

HMA 1.040 0 AED 12.80 

AED 0.964 0 HMA 11.94 

HCSA 0.741 0 ADIST 6.19 

ADIST 0.703 0 HED 6.04 

HED 0.652 0 HDIST 5.73 

HDIST 0.608 0 HCSA 5.69 

HMN 0.544 0 HH 4.16 

HH 0.533 0 HMN 3.79 

HM 0.475 1 HM 3.79 

AM 0.459 1 AM 3.27 

ASS 0.399 1 ASS 2.85 

HHLB 0.284 0 SWGBI 2.11 

SWGBI 0.281 0 HHLB 2.06 

MSCI 0.232 1 MSCI 1.78 

 

 

The column marked indicator takes the value 1 when the Sharpe ratio agrees with the 

Omega ranking as to rank order. There are just five points of agreement, a clear 

indication of the importance of higher moment effects. The Kendall and Spearman 

rank correlations are 0.89 and 0.97. 

 

Of course, to obtain a full picture of relative performance we should not only be 

considering the ordering by Omega at the single threshold r = 0, but rather the 

function Ω(r)  over the range of returns, as is illustrated as Diagram 4.1 below. 
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Diagram 4.1 Omega as a Function of Return Threshold. 

 

For clarity, this shows only a selection of the index sequences over the range of 

returns experienced, on a logarithmic scale. Points where the Omegas cross are 

indifference points for choices between particular portfolio pairings. In the broadest of 

terms, the steepness of the Omega function is a measure of its risk. The steeper, the 

less risky. Though not shown here, the majority of the hedge fund indices are steeper 

than the SWGBI and MSCI, in the manner of ARV and AED above. The index ASS 

above seems to offer true value, being most consistently better than the MSCI. Above 

its mean, a steeply sloped Ω also implies a very limited potential for further gain. 

 

At threshold –1, a high risk tolerance, the preference ordering is ARV, AED, SWGBI, 

ASS, MSCI while at threshold +2, the preference ordering is ASS, MSCI, AED, 

SWGBI, ARV.  

 

Comparison of the indifference points based upon the Sharpe measure, where the risk 

free rate changes, and the Omega function is also possible as is illustrated in Diagram 

4.2 below. The data-set here consists of a UK equity index, an international bond 
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index and a UK property index. This diagram has a log scale for Ω and a linear scale 

for the Sharpe ratio.  

 

 

 
Diagram 4.2 Omega and Sharpe ratios (for threshold varying risk free) 

 

Notice that none of the indifference points are coincident, again illustrating the 

importance of the corrections due to higher moment information which Omega 

incorporates. 

 

“Risk” Threshold - MSCI returns 

The second application uses the return from the MSCI as its “risk” threshold. The 

descriptive statistics for these distributions are appended as table 04. The tabulation 

below has the Sharpe ordering to the right and the Ω ordering to the left. 
 Ω Indicator  Sharpe 

HH 1.58 1 HH 0.17 
HM 1.43 0 ASS 0.14 
ASS 1.41 0 HM 0.13 
AMA 1.39 1 AMA 0.13 
AED 1.36 1 AED 0.12 
AM 1.35 1 AM 0.12 
ACSA 1.32 1 ACSA 0.11 
ADIST 1.29 1 ADIST 0.10 
ARV 1.26 0 HED 0.09 
HED 1.26 0 ARV 0.09 
AELS 1.18 0 HHLB 0.07 
HHLB 1.18 0 AELS 0.06 

0.1

1
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HMA 1.10 1 HMA 0.04 
HDIST 1.03 1 HDIST 0.01 
HCSA 1.03 1 HCSA 0.01 
HMN 0.84 1 HMN -0.07 
SWGBI 0.79 1 SWGBI -0.09 
There is once more some disagreement between the two rank orderings, due to higher 

moment effects.  

A selection of the Ω functions for these MSCI relative portfolios is shown below as 

Diagram 4.3. In order to facilitate comparison with Tracking Error type measures, we 

present these demeaned or normalised. 

 

Diagram 4.3 Demeaned Omegas for a selection of MSCI relative indices. 

Tracking Error 

As Tracking Error is now a popular measure of portfolio performance we shall also 

report the rank ordering of these MSCI relative portfolios by Tracking Error9 and by 

the Sharpe measure and Omega at threshold zero. 

 
 Tracking 

Error 
Ω(0) Sharpe 

HHLB 1 12 11
HH 2 1 1
HED 3 10 9
AED 4 5 5
ADIST 5 8 8
HM 6 2 3
AELS 7 11 12
HDIST 8 14 14
AMA 9 4 4
HMA 10 13 13
AM 11 6 6
ARV 12 9 10
ASS 13 3 2
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HCSA 14 15 15
ACSA 15 7 7
HMN 16 16 16
SWGBI 17 17 17
 

Notice that the only points of agreement between the rank ordering by Tracking Error 

by Sharpe and by Omega, which incorporates all the higher moment effects, are for 

the two poorest performing portfolios HMN and SWGBI. We report the Kendall and 

Spearman rank correlation statistics below: 
Kendall's rank correlation coefficient : 

   
 Tracking 

Error 
Ω Sharpe 

Tracking 
Error 

1 0.3088 0.3235

Ω 0.3088 1 0.9559
Sharpe 0.3235 0.9559 1
 
Spearman's rank correlation coefficient : 

   
 Tracking 

Error 
Ω Sharpe 

Tracking 
Error 

1 0.4093 0.4289

Ω 0.4093 1 0.9926
Sharpe 0.4289 0.9926 1
 

Here, though the principal point to note is only that Tracking Error is poorly 

correlated with either Sharpe or Ω performance measures, it is hard not to conclude 

that Tracking Error is a very poor performance measurement criterion or tool. 

The final illustration is the time evolution of the cumulative Omega measures of the 

MSCI and SWGBI, at risk threshold zero, and for comparison their Sharpe analogues 

at zero risk free, which is shown below as Diagram 4.4. Here it is evident that the 

Sharpe measure captures much, but no means all, of the value evolution. 
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Diagram 4.4: A Comparison of the Cumulative Omega and Sharpe Measures
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Table 01 ACSA ADIST AED AELS AM AMA ARV ASS HCSA HIST HH HMN HHLB HED HM HMA MSCI SWGBI
 
Number of  
observations 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
 
Missing  
values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sum of 
 weights 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101
 
Minimum -2.65 -7.07 -6.71 -2.49 -4.15 -5.28 -1.95 -15.08 -4.95 -7.91 -7.92 -2.44 -10.82 -7.82 -6.62 -5.50 -13.45 -4.07
 
Maximum 3.32 5.25 4.07 3.50 9.21 3.25 2.62 11.17 3.33 5.76 10.07 4.14 8.53 8.59 9.84 2.91 8.91 7.42
 
Mean 1.32 1.24 1.32 1.14 1.37 1.37 1.25 1.44 0.94 0.94 1.38 0.63 1.06 1.20 1.36 1.03 0.90 0.55
 
Standard dev. 0.98 1.76 1.36 0.93 2.91 1.09 0.73 3.57 1.28 1.56 2.61 1.16 3.76 1.85 2.88 1.00 3.89 1.97
 
1st quartile 0.92 0.15 0.54 0.60 -0.66 0.94 0.75 -0.79 0.52 0.25 -0.44 0.04 -0.94 0.06 -0.40 0.60 -1.45 -0.73
 
Median 1.39 1.28 1.50 1.12 1.20 1.51 1.34 1.47 1.21 1.07 1.40 0.65 1.44 1.41 0.84 1.17 1.51 0.36
 
3rd quartile 2.00 2.29 2.00 1.79 3.28 1.97 1.77 3.59 1.65 1.70 2.77 1.33 3.54 2.33 3.35 1.67 3.31 1.77
 
Kurtosis 2.11 4.30 11.10 1.40 -0.40 12.66 2.86 3.98 5.35 11.63 2.18 0.39 0.85 6.69 0.69 17.06 0.99 1.17
 
Skewness -0.87 -0.97 -1.96 -0.45 0.32 -2.43 -1.01 -0.83 -1.73 -1.84 0.16 -0.16 -0.75 -0.48 0.45 -2.91 -0.72 0.43
 
Std dev of mean 0.10 0.17 0.14 0.09 0.29 0.11 0.07 0.36 0.13 0.16 0.26 0.12 0.37 0.18 0.29 0.10 0.39 0.20
 
Zero Sharpe 1.35 0.71 0.97 1.22 0.47 1.25 1.71 0.40 0.74 0.60 0.53 0.54 0.28 0.65 0.47 1.03 0.23 0.28
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Table02  ACSAADIST AED AELS AM AMA ARV ASS HCSA HDIST HH HMN HHLB HED HM HMA MSCISWGBI
ACSA 1.00 0.64 0.67 0.55 0.48 0.57 0.83 0.44 0.60 0.58 0.46 0.47 0.30 0.50 0.37 0.41 0.24 -0.10
ADIST 0.64 1.00 0.93 0.57 0.58 0.74 0.72 0.61 0.43 0.68 0.65 0.33 0.53 0.61 0.58 0.56 0.47 -0.05
AED 0.67 0.93 1.00 0.63 0.53 0.91 0.72 0.63 0.52 0.74 0.68 0.35 0.56 0.69 0.55 0.71 0.49 -0.07
AELS 0.55 0.57 0.63 1.00 0.44 0.58 0.80 0.53 0.38 0.43 0.64 0.52 0.50 0.48 0.45 0.46 0.48 0.06
AM 0.48 0.58 0.53 0.44 1.00 0.35 0.55 0.54 0.30 0.32 0.60 0.12 0.46 0.40 0.68 0.26 0.45 0.12
AMA 0.57 0.74 0.91 0.58 0.35 1.00 0.59 0.54 0.51 0.65 0.57 0.34 0.46 0.67 0.46 0.77 0.42 -0.05
ARV 0.83 0.72 0.72 0.80 0.55 0.59 1.00 0.53 0.51 0.62 0.57 0.55 0.43 0.57 0.51 0.45 0.36 -0.05
ASS 0.44 0.61 0.63 0.53 0.54 0.54 0.53 1.00 0.47 0.52 0.59 0.05 0.53 0.52 0.56 0.45 0.50 -0.18
HCSA 0.60 0.43 0.52 0.38 0.30 0.51 0.51 0.47 1.00 0.53 0.46 0.33 0.37 0.52 0.38 0.38 0.25 -0.05
HDIST 0.58 0.68 0.74 0.43 0.32 0.65 0.62 0.52 0.53 1.00 0.52 0.23 0.50 0.69 0.48 0.59 0.41 -0.10
HH 0.46 0.65 0.68 0.64 0.60 0.57 0.57 0.59 0.46 0.52 1.00 0.32 0.86 0.68 0.63 0.48 0.68 0.07
HMN 0.47 0.33 0.35 0.52 0.12 0.34 0.55 0.05 0.33 0.23 0.32 1.00 0.23 0.30 0.21 0.24 0.20 0.15
HHLB 0.30 0.53 0.56 0.50 0.46 0.46 0.43 0.53 0.37 0.50 0.86 0.23 1.00 0.65 0.53 0.45 0.79 0.08
HED 0.50 0.61 0.69 0.48 0.40 0.67 0.57 0.52 0.52 0.69 0.68 0.30 0.65 1.00 0.60 0.61 0.53 -0.02
HM 0.37 0.58 0.55 0.45 0.68 0.46 0.51 0.56 0.38 0.48 0.63 0.21 0.53 0.60 1.00 0.35 0.49 0.04
HMA 0.41 0.56 0.71 0.46 0.26 0.77 0.45 0.45 0.38 0.59 0.48 0.24 0.45 0.61 0.35 1.00 0.41 -0.04
MSCI 0.24 0.47 0.49 0.48 0.45 0.42 0.36 0.50 0.25 0.41 0.68 0.20 0.79 0.53 0.49 0.41 1.00 0.24
SWGBI -0.10 -0.05 -0.07 0.06 0.12 -0.05 -0.05 -0.18 -0.05 -0.10 0.07 0.15 0.08 -0.02 0.04 -0.04 0.24 1.00
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Table 
03  

factor 
1 

factor 
 2 

factor 
3 

factor 
4 

factor 
5 

factor 
6 

factor 
7 

factor 
8 

factor
 9 

factor 
10 

factor 
11 

factor 
12 

factor 
13 

factor 
14 

factor 
15 

factor 
16 

factor 
17 

factor 
18 

ACSA 0.73 -0.44 0.20 0.23 0.00 0.12 0.06 -0.22 -0.08 0.20 0.10 0.06 0.08 0.21 -0.02 -0.03 -0.07 0.00 
ADIST 0.86 -0.10 -0.07 0.07 0.25 -0.10 -0.08 -0.17 -0.15 -0.24 -0.03 0.05 -0.05 -0.05 0.20 -0.05 -0.04 -0.04 
AED 0.91 -0.16 -0.12 -0.09 0.22 -0.09 0.00 -0.06 -0.15 -0.13 -0.06 0.00 0.04 -0.02 -0.01 0.00 0.00 0.09 
AELS 0.75 -0.05 0.34 0.06 -0.10 -0.36 0.20 0.13 0.22 0.03 -0.20 -0.10 0.08 -0.07 0.00 -0.03 -0.10 0.00 
AM 0.64 0.30 0.07 0.54 0.28 0.04 -0.03 0.04 -0.16 0.20 0.08 -0.02 -0.07 -0.18 -0.10 0.03 -0.02 -0.01 
AMA 0.82 -0.22 -0.15 -0.30 0.22 -0.06 0.05 0.14 -0.12 -0.08 -0.05 0.01 0.18 0.03 -0.18 0.08 0.03 -0.04 
ARV 0.82 -0.29 0.28 0.23 -0.01 -0.12 0.02 -0.13 0.16 0.10 -0.03 -0.02 0.03 -0.02 0.09 0.08 0.16 0.00 
ASS 0.73 0.11 -0.32 0.27 -0.05 -0.06 0.35 0.12 0.17 -0.16 0.11 0.22 -0.14 0.07 -0.04 0.01 0.01 0.00 
HCSA 0.63 -0.26 0.00 0.02 -0.27 0.57 0.27 0.15 -0.12 -0.06 -0.03 -0.11 0.03 -0.09 0.07 -0.01 0.00 0.00 
HDIST 0.77 -0.19 -0.23 -0.15 0.02 0.19 -0.13 -0.29 0.30 -0.07 0.02 -0.16 -0.14 -0.05 -0.13 -0.02 -0.02 -0.01 
HH 0.83 0.35 0.04 0.00 -0.20 -0.05 -0.03 -0.01 -0.18 0.05 -0.22 -0.02 -0.11 0.09 -0.08 -0.17 0.07 -0.01 
HMN 0.44 -0.29 0.69 -0.16 -0.23 -0.08 -0.21 0.15 -0.08 -0.15 0.19 0.07 -0.13 -0.04 -0.06 0.01 0.00 0.00 
HHLB 0.73 0.49 -0.05 -0.16 -0.31 -0.05 -0.02 -0.14 -0.13 0.03 -0.06 -0.04 -0.08 0.06 0.04 0.20 -0.04 0.00 
HED 0.80 0.05 -0.14 -0.20 -0.12 0.19 -0.25 0.04 0.14 0.17 -0.10 0.31 0.10 -0.11 0.03 -0.02 -0.02 0.00 
HM 0.70 0.29 -0.04 0.31 0.08 0.16 -0.34 0.30 0.15 -0.11 0.03 -0.13 0.08 0.15 0.05 0.01 -0.01 0.01 
HMA 0.69 -0.14 -0.22 -0.45 0.19 -0.11 0.05 0.23 0.00 0.28 0.14 -0.09 -0.16 0.03 0.10 -0.02 0.00 0.00 
MSCI 0.65 0.58 0.04 -0.18 -0.13 -0.09 0.11 -0.15 0.02 -0.03 0.31 -0.05 0.20 -0.05 0.01 -0.08 0.02 0.00 
SWGBI -0.01 0.45 0.61 -0.28 0.43 0.31 0.17 -0.05 0.11 -0.03 -0.08 0.06 -0.05 0.05 0.01 0.01 0.00 0.00 
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Table04 ACSA ADIST AED AELS AM AMA ARV ASS HCSA HDIST HH HMN HHLB HED HM HMA SWGBI 
Observations 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Missing values 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sum of weights 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Minimum -9.42 -8.92 -7.84 -7.79 -8.01 -7.03 -9.79 -7.32 -9.6 -9.75 -6.75 -10.42 -4.35 -8.16 -10.39 -7.78 -8.4 
Maximum 10.8 11.42 10.24 10.96 13.35 9.98 11.5 9.76 11.52 10.39 9.01 12.07 6.76 8.64 10.74 8.89 17 
Mean 0.409 0.332 0.407 0.230 0.427 0.458 0.334 0.521 0.040 0.045 0.486 -0.273 0.162 0.304 0.467 0.133 -0.351 
Standard dev. 3.80 3.459 3.451 3.561 3.667 3.589 3.710 3.754 3.800 3.565 2.860 3.857 2.494 3.326 3.538 3.621 3.945 
1st quartile -2.44 -2.04 -1.98 -2.13 -2.29 -2.20 -2.27 -2.08 -2.64 -2.34 -0.97 -2.74 -1.68 -2.2 -1.6 -2.74 -2.99 
Median -0.14 0.165 0.16 -0.13 0.575 0.275 -0.065 -0.05 -0.1 0.27 0.29 -0.74 0.06 0.11 0.59 -0.14 -0.88 
3rd quartile 2.80 2.485 2.737 2.28 2.49 2.83 2.54 2.79 1.97 2.25 1.90 2.37 1.63 2.66 2.22 2.48 1.91 
Kurtosis 0.253 0.619 0.256 0.407 1.277 -0.019 0.492 -0.330 0.683 0.389 0.536 0.675 -0.344 -0.092 1.251 -0.242 2.931 
Skewness 0.50 0.446 0.480 0.595 0.390 0.491 0.466 0.160 0.499 0.189 0.285 0.495 0.377 0.127 -0.016 0.326 0.986 
Std dev of mean 0.38 0.345 0.345 0.356 0.366 0.358 0.371 0.375 0.380 0.356 0.286 0.385 0.249 0.332 0.353 0.362 0.394 

 
 
Descriptive Statistics: Indices relative to MSCI 
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Conclusions and Further Work 

 

We have introduced a simple measure of performance which is both natural from the 

standpoint of probability and statistics and heuristically appealing in its financial 

interpretation. It is defined in the most basic of terms but captures all higher moment 

information in a distribution of returns. It is broadly in the spirit of the downside and 

related literature, but could also be related to the stochastic dominance and decision 

literature. There is existing work, by Liang Zou, which approaches downside type 

measures axiomatically10. 

 

We have applied this to a set of hedge fund index returns. We accept that these returns 

sequences have survivor and other biases present but for pedagogic purposes they 

suffice. The results, based on the simplest of decision rules, namely that we prefer 

more to less, show a markedly different order of preference from more traditional 

measures such as the Sharpe ratio or tracking error. In the case of the Sharpe ratio, 

this difference arises from the additional higher moment information which Omega 

captures. The presence of such effects in real data is, we trust, convincing evidence 

for the improvements in performance measurement which the Omega function 

provides.  

 

We have also demonstrated, with examples from analytic probability distributions, 

that Omega is a powerful tool for the capture of higher moment effects. A number of 

the most important basic properties of Omega have been stated. The affine invariance 

of Ω allows comparisons to be made in a way that is independent of scaling and 

translations of the underlying returns or equivalently, of the risk threshold.  

 

The canonical nature of Ω also provides for additional performance measures to be 

induced from more general transformations of the returns distribution. This is 

equivalent to the use of alternative utility functions encoding risk preferences or 

tolerances. The induced Omega function may be used to provide a consistent 

performance ranking for each such risk adjustment. This is a subject for further 

investigation. 
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In this paper we have not considered in any detail, either time serial behaviour or 

portfolio optimisation; these will be the subject of further, later papers. A more 

advanced analysis of the properties of Ω and some of its statistical characteristics is 

the subject of Cascon, Keating and Shadwick 2001. 

 

The most obvious further requirement is for a more advanced technique for the 

estimation of stationarity which explicitly considers the higher moments. The ideal 

would provide some indication of the likelihood of stationarity based upon prior 

arrivals, but this is a non-trivial affair.  It seems likely that a frequency domain 

analysis of Ω would provide some useful insights. 

 

The gain-loss literatures, such as Bernardo and Ledoit11, already provide some 

insights as to how Omega might be used in asset pricing. An unpublished work of 

Agarwal and Naik extends that literature to optimal asset allocation12. 

 

The overwhelming lesson from modern finance is that the state of the economy in 

which a return is received is a prime determinant of its value13.  It is comparatively 

trivial to revert to the more familiar ground of a fixed risk free rate or even the returns 

from some passive index as a proxy for the wealth and consumption capacity14, as we 

have illustrated in the index-relative case earlier. This introduction is limited to the 

simple univariate case while for most pricing and portfolio applications consideration 

of the multivariate case is required. This is the subject of further, later papers. 

 

The most obvious extension is to performance attribution. We might have followed 

Hicks and Marschak15 in the observation that preferences are a function of all of the 

moments of a returns distribution and we have demonstrated earlier why that might be 

rational choice. We might then have simply noted that these are a function of the 

moment generating function of the returns distribution and in turn the characteristic 

and cumulative density functions. The obvious extension from there is to the 

frequency domain and examination of the spectra of the returns series, where the 

limiting requirement of most techniques applied is only covariance stationarity. 

 

Perhaps the most interesting hypothesis to be investigated is that the activity in funds 

where higher moments are significant is directly related to the sale of liquidity and 
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that will take us into the monetary economics, and possibly the causal identification of 

the factors driving performance.  

 

One further avenue for investigation is that of behavioural finance, where, with the 

higher moments now accounted for, we might investigate by way of the penalty 

function the nature of some of the irrationality they claim. 
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Appendix A: Omega and Markowitz Frontiers 

 

For two returns series, A and B, which are negatively correlated, we show the frontier 

achieved by weights varying from [0% A, 100% B] to [100% A, 0% B] in 5% steps: 

As is usual with these diagrams, the vertical axis is return (in %) and the horizontal 

standard deviation of returns (in %). The square is the optimal portfolio allocation 

given a risk-free return of 0%, a mixture of 50% A and 50% B. The Ω optimal, the 

circle, is a significantly different asset allocation, (35% A and 65% B).  

Diagram A1 Risk –Return Frontier 

 

We now present the Ω analogue of this diagram: 

Diagram A2 Omega at 0 threshold 

 

The vertical axis is the value of the upside or downside, 2I or 1I earlier. The horizontal 

axis is the proportion of asset A in the portfolio mix. The dotted triangular marked 

line is the upside value for differing mixes. The continuous square marked line is the 
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downside value for differing mixes. The heavy lozenge marked line is the Ω function. 

Note that this is infinite at and between portfolio mixes of 35% and 65% A. In this 

range the effects of diversification mean that the portfolio has no downside, and the 

downside function is zero in this range. Using our preference for more rather than 

less, we should therefore prefer the portfolio 35% A and 65% portfolio B, marked as a 

circle, rather than the Markowitz optimal portfolio of 50% A and 50% B, marked as a 

square. We are in fact choosing among “free lunches” as there is no downside risk 

present. 

 

Notice also that the traditional risk-return framework does not suggest at any point 

that the portfolio has no (downside) risk. The risk as measured by the standard 

deviation of returns is always positive. 

 

Asset allocation and portfolio optimisation will be the subject of another later paper. 
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Appendix B 
 
We illustrate the effect of higher moments on Ω in this appendix. For this purpose we 

have used analytic distributions constructed from linear combinations of normal 

distributions. 
 

We first consider the behaviour of the Omega function for normal distributions as 

their variance changes at a common mean. Diagram B.1 shows Ω for three normals, 

of mean zero, with standard deviations of 5,10 and 15, shown dotted, solid and dashed 

respectively. The reversal of preferences across the mean is the effect of variance. On 

the upside, increased variance provides more chance of gain, while on the downside it 

provides , symmetrically, more chance of loss. Thus, the smaller the variance, the 

steeper the slope of the Omega function. 
 

 

 
 
Diagram B.1: Ωs for normals of mean zero and variance 5,10 and 15 
 
 
We next consider the effects of skew and kurtosis. More precisely, as the Omega 

function responds to the effects of all moments, we can illustrate the effects of third 

and higher moments and fourth and higher moments.  
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First we make a comparison of the Omega measures for distributions whose kurtosis 

is the same as a normal with the same mean and variance. This illustrates the impact 

of skew and moments of fifth and higher orders. 
 

 
Diagram B.2: Two distributions with the same mean, variance and kurtosis 
 
The  skewed distribution in diagram B.2 has the same mean, 2.5, variance, 24  and 

kurtosis, 3 as the normal distribution shown by the solid curve. The skewness is 0.86. 

Thus this distribution differs from the normal only in its skewness and fifth and higher 

moments. 

 

The Ωs corresponding to the these distributions are shown in Diagrams B.3 and B.4. 

While there is a separation in the Ω curves away from the mean, the differences 

around the mean are small. The shapes of the curves differ strongly even here 

however as the derivatives of  Ω with respect to L, illustrated in Diagrams B.5 and 

B.6 indicate. 
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Diagram B.3: Ωs as functions of r for the distributions in Diagram B.2 
 

 
Diagram B.4: Ωs as functions of r for the distributions in Diagram B.2 
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Diagram B.5: First derivatives of Ω with respect to r 
 

 
 
Diagram B.6: First derivatives of Ω with respect to r. 
 
The second derivative behaviour is even more markedly different for the skewed 
distribution.  
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Diagram B.7: Second derivatives of Ω with respect to r, 
 
Finally we make a comparison of the Ωs for three symmetric distributions with the 

same mean and variance and kurtosis of 3, 5.9 and 11.8. The differences in the Ωs are 

therefore produced by kurtosis and by sixth and higher even moments. 

 
 
Diagram B.8: Symmetric distributions differing in kurtosis and higher even moments 
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As diagrams B 9,B.10 and B.11 show, although on very different scales, the Omega 

measure displays significant differences due to these higher moment effects. The 

asymptotic rankings are as indicated in B.9 and B.11, corresponding to the higher 

probability of large losses and gains increasing with kurtosis. The higher kurtosis Ωs 

each cross the Ω for the normal distribution in three places and themselves cross three 

times, at +/-20 and at their common mean of 0. 

 
 
Diagram B.9: Ωs as functions of r for the distributions of Diagram B.8 
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Diagram B.10: Ωs as functions of r  for the distributions of Diagram B.8 
 

 
 
Diagram B.11: Ωs as functions of r for the distributions of Diagram B.8 
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The second derivative behaviour here may be contrasted with that in Diagram B.7. 

Although the two cases have large differences in variance, the effect seen here is 

primarily due to skew and higher odd moments. 

 

Diagram B.12: Second derivatives of Ω with respect to r for the distributions of 

Diagram B.8. 
 
 
 
 
 
 
 

 

 

 
                                                           
1 The absence of a utility function here may, at first sight, be disconcerting. However, in order to rank 
portfolios over an interval of possible returns, all that is needed is a comparison of the magnitudes of 
their omegas over that interval. For example, if asset A’s Omega is larger than asset B’s over an 
interval, we should prefer asset A in that range of returns. It is this application which we explore in the 
present paper. If we wish to quantify the difference between the two assets on the other hand, we must 
introduce additional structure which can, for example, decide how much better is an omega of 2 than an 
omega of 1.5. A utility function is the obvious way to do this.  
 
2 This example is a less dramatic variant on the choice between buying a lottery ticket for £1 with a one 
in a million chance of winning £1million and selling a lottery ticket for £1 with a one in a million 
chance of having to pay out £1million. We have, to date, found no one who regards these two as 
equally attractive. 
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3  A. Cascon, C Keating and W. Shadwick  “Properties of the Omega Measure” Preprint Finance 
Development Centre 2001 
 
4  A Cascon, C. Keating and W Shadwick 2001 op cit 
 
5   The commonly used tracking error measure, the square root of the variance of the difference 
portfolio, assumes a common location or mean for the portfolio and its comparator index. More 
generally this should be the square root of the sum of the mean squared plus the variance and even then 
we need the value of the mean or at least its sign to know whether the manager is adding or subtracting 
value relative to the passive. The Omega measure or some risk adjusted counterpart centred on the 
passive index give us direct measures of relative performance. 
 
6  For a fuller discussion of hedge fund indices see: Brooks C. and Kat H. “The Statistical 
Properties of Hedge Fund Index Returns and Their Implications for Investors” Working Paper, ISMA 
Centre, University of Reading October 2001. 
 
7  Five tests were utilised: A Stochastic Dominance Test, Wilcoxon-Mann-Whitney, Student’s T, 
a known variance Z, and Fisher’s F. Full details are available from the authors on request. 
 
8  There is some evidence that traditional fund managers are biased towards positive skewness, 
which would explain, beyond dealing costs, their average apparent inability to outperform benchmark 
indices. The intuition here may be that they buy fewer of the high risk investments that are present in 
the market. See for example: F.D. Arditti “Another Look at Mutual Fund Performance” Journal of 
Financial and Quantitative Analysis, June 1971. 
 
9  The tracking error calculated here is the popular version, the standard deviation of the 
difference portfolio. 
 
10  Liang Zou “Dichotomous Theory of Choice under Risk I: Basic Framework and Axiomatic 
Foundation” Working Paper, Tinbergen Institute, University of Amsterdam 2002 
 see also www.tinbergen.nl/discussionpapers/00050.pdf  and 

www.tinbergen.nl/discussionpapers/00108.pdf 
 

11  Bernardo and Ledoit (see below) consider a gain / loss function, which is defined as the 
expected positive excess returns divided by the expected negative excess returns under some risk 

adjusted probability measure. This suffers from the difficulty that their ratio 
]~[*
]~[*

−

+

xE
xE is not continuous 

and that the derivatives do not therefore exist. This is not a problem for the measure that we shall settle 
upon. 
 A.E. Bernardo and O. Ledoit “Gain, Loss and Asset Pricing” Journal of Political Economy, 
2000 Vol. 8 No 1 pp 144 – 172 
 
12  V. Agarwal and N. Naik, “Does Gain-Loss Analysis Outperform Mean-Variance Analysis? 
Evidence from Portfolios of Hedge Funds and Passive Strategies.” Unpublished manuscript – London 
Business School November 1999 
 
13  This is just the classic statement , 
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where )(' cu is the 

marginal utility, that an asset’s price is lowered if it covaries positively with consumption and of course 
the theoretical basis for insurance. 
 
14  This is in the spirit of Brown and Gibbons. See: S. Brown and M. Gibbons “ A Simple 
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